شبکه عصبی بولتزمن که در اواخر صده 1900 رو به فراموشی بود پس از احیای الگوریتم همگرایی و افزایش فوق العاده سرعت آموزش، سریع به یک مدل پرمخاطب تبدیل شد، تا جایی که مدل‌های پیچیده یادگیری عمقی(عمیق) یا deep learning براساس آن ابداع شدند. شبکه عصبی بولتزمن برخلاف شبکه پس انتشار دارای یک لایه است و وزن‌های میانی دارای معنی هستند. همین ویژگی بولتزمن باعث شد که شبکه‌های عمیق به وجود آمده و بتوان بر روی وزن‌های میانی یک شبکه بولتزمن دیگر آموزش داد. اساس کار این شبکه فراگیری توزیع داده‌های ورودی و ارتباط ان با خروجی نمونه‌هاست به نحوی که نمونه‌های جدید ورودی با توزیع استخراج شده با حداقل خطا بتوانند به تولید الگوی خروجی بپردازند.

 

منابع:

کتاب اصول شبکه‌های عصبی نویستده فاوست

نوشتن دیدگاه


تصویر امنیتی
تصویر امنیتی جدید